博客
关于我
端元提取、光谱角、端元提取光谱角检测模型
阅读量:480 次
发布时间:2019-03-06

本文共 537 字,大约阅读时间需要 1 分钟。

端元及其提取解析

什么是端元?

端元(endmember)是地物信息的最简形式,通常与混合像元相对。混合像元包含多种地物信息,而端元仅包含一种地物特征。在像元分解过程中,可以通过定量分析各端元在混合像元中的面积比例,即端元丰度(abundance),来描述端元的分布。

端元提取的基本原理

端元提取(endmember extraction,EE)主要包含两个关键步骤:端元识别和端元提取。基于几何特征的端元识别方法常采用以下降维技术:

  • 主成分分析(PCA):用于去除噪声,降维。
  • 多因子分析(MNF):进一步优化降维效果。
  • 独立校正(IC):增强数据相关性分析。

通过这些降维方法,相关性较低的波段被选定作为二维散点图的横纵轴。散点图中凸出区域的端元候选区域对应的平均波谱即为目标端元。

光谱角的意义

光谱角(spectral angle,SA)反映光谱曲线的相似性程度。其值越接近0,表明光谱波形越相似,地物特征越一致。

端元提取与光谱角结合的优势

将端元提取与光谱角相结合,可以构建无损检测模型。该模型通过以下步骤实现:

  • 提取所有端元波谱;
  • 将受损区域波谱与端元波谱进行匹配,识别缺损部分的端元组合。
  • 这种方法能够有效评估受损区域的光谱特征,保证检测的准确性和可靠性。

    转载地址:http://hljdz.baihongyu.com/

    你可能感兴趣的文章
    Numpy.fft.fft和numpy.fft.fftfreq有什么不同
    查看>>
    Numpy.ndarray对象不可调用
    查看>>
    Numpy如何使用np.umprod重写range函数中i的python
    查看>>
    numpy数组替换其中的值(如1替换为255)
    查看>>
    numpy数组索引-ChatGPT4o作答
    查看>>
    numpy转PIL 报错TypeError: Cannot handle this data type
    查看>>
    NutzCodeInsight 2.0.7 发布,为 nutz-sqltpl 提供友好的 ide 支持
    查看>>
    NUUO网络视频录像机 css_parser.php 任意文件读取漏洞复现
    查看>>
    NVelocity标签使用详解
    查看>>
    nvidia-htop 使用教程
    查看>>
    oauth2-shiro 添加 redis 实现版本
    查看>>
    OAuth2.0_JWT令牌-生成令牌和校验令牌_Spring Security OAuth2.0认证授权---springcloud工作笔记148
    查看>>
    OAuth2.0_JWT令牌介绍_Spring Security OAuth2.0认证授权---springcloud工作笔记147
    查看>>
    OAuth2.0_介绍_Spring Security OAuth2.0认证授权---springcloud工作笔记137
    查看>>
    OAuth2.0_完善环境配置_把资源微服务客户端信息_授权码存入到数据库_Spring Security OAuth2.0认证授权---springcloud工作笔记149
    查看>>
    OAuth2.0_授权服务配置_Spring Security OAuth2.0认证授权---springcloud工作笔记140
    查看>>
    OAuth2.0_授权服务配置_令牌服务和令牌端点配置_Spring Security OAuth2.0认证授权---springcloud工作笔记143
    查看>>
    OAuth2.0_授权服务配置_客户端详情配置_Spring Security OAuth2.0认证授权---springcloud工作笔记142
    查看>>
    OAuth2.0_授权服务配置_密码模式及其他模式_Spring Security OAuth2.0认证授权---springcloud工作笔记145
    查看>>
    OAuth2.0_授权服务配置_资源服务测试_Spring Security OAuth2.0认证授权---springcloud工作笔记146
    查看>>